|
¼ö¾÷°ú¸ñ |
Á¶¼±°øÇа³·Ð, ±âÃÊ¿ªÇÐ, ÇÔÁ¤½Å±â¼úÀÇ ÀÌÇØ, Çرº¹«±âü°è°øÇÐ, ÇÔÁ¤°øÇа³·Ð
|
|
|
ÇмúÈ°µ¿ |
¡Þ ¿¬±¸º¸°í¼
¹Ì·¡ Çرº ÇÔÁ¤ ÀΰøÁö´É ÇнÀ ¿ä¼Ò¿¡ ´ëÇÑ ¿¬±¸ / ÇÑȽýºÅÛ, '24. 1. ~ '24.12.
Â÷±â¼ÒÇØÇÔ VDS/CIS RAM ¸ñÇ¥°ª ¼³Á¤ ¿¬±¸ / LIG NEX1, '23. 4. ~ '24. 3.
Çرº G/K âÁ¤ºñ »ç¾÷ ¼º°úºÐ¼® ¿¬±¸ / Çرº ÀüÆò´Ü, '22. 6. ~ '23. 3.
Àü±âÃßÁøÇÔÁ¤ ÀÓ¹«È¿°úµµ ºÐ¼® / ´ë¿ìÁ¶¼±Çؾç, '21. 2. ~ 12.
.
¡Þ Çмú³í¹®
[¹Ú»çÇÐÀ§³í¹®] Remaining Useful Life Prognosis of a Turbofan Engine by Using Explainable Deep Neural
Networks with Dimensionality Reduction, ¿¬¼¼´ëÇб³(2021)
[¼®»çÇÐÀ§³í¹®] ¿¬¼Ò±â-Åͺó ´ÜÂ÷¿¡ ÀÇÇÑ °¡½ºÅͺó 1´Ü ³ëÁñ ¿£µå¿ù ¿Àü´Þ Ư¼º, ¿¬¼¼´ëÇб³(2016)
.
- ±¹Á¦³í¹®
Exhaust Temperature Prediction for Gas Turbine Performance Estimation by Using Deep Learning.
Journal of Electrical Engineering & Technology. (1-9). (2023).
ConvNet-based Remaining Useful Life Prognosis of a Turbofan Engine. In 2021 IEEE 4th
International Conference on Knowledge Innovation and Invention(ICKII) (pp. 190-193). IEEE. (2021).
Remaining Useful Life Prognosis for Turbofan Engine Using Explainable Deep Neural Networks with
Dimensionality Reduction. Sensors, 20(22), 6626. (2020).
Deep Concatenated Residual Network With Bidirectional LSTM for One-Hour-Ahead Wind Power
Forecasting. IEEE Transactions on Sustainable Energy, 12(2), 1321-1335. (2020).
Explainable Artificial Intelligence for the Remaining Useful Life Prognosis of the Turbofan
Engines. In 202020 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII)
(pp. 144-147). IEEE. (2020).
Multivariate time series forecasting for remaining useful life of turbofan engine using deep-
stacked neural network and correlation analysis. In 2020 IEEE International Conference on Big Data
and Smart Computing (BigComp) (pp. 63-70). IEEE. (2020).
Heat transfer measurement near endwall region of first stage gas turbine nozzle having platform
misalignment at combustor-turbine interface. International Communications in Heat and Mass Transfer,
78, 101-111, (2016).
.
- ±¹³»³í¹®
ÀΰøÁö´É°ú ºòµ¥ÀÌÅ͸¦ È°¿ëÇÑ ¿¹ÁöÁ¤ºñ Àû¿ë¿¡ °üÇÑ ¿¬±¸. ±¹¹æÁ¤Ã¥¿¬±¸, Á¦136È£. (2022).
°¡»ó¡¤Áõ°Çö½ÇÀÇ ¹ßÀü µ¿Çâ°ú ±º ±³À°ÈÆ·Ã ºÐ¾ß Àû¿ë¹æ¾È. Çѱ¹Á¤º¸±â¼úÇÐȸ³í¹®Áö, 20(8). (2022).
½ÉÃþ½Å°æ¸Á°ú ÇǾ»ó°ü°è¼ö¸¦ È°¿ëÇÑ Åͺ¸ÆÒ¿£Áø ÀÜ¿©À¯È¿¼ö¸í ¿¹Ãø. Journal of the KNST, 4(1).
(2021).
CNN-RNN ±â¹ÝÀÇ DNNÀ» È°¿ëÇÑ DP ¼±¹ÚÀÇ Àü·ÂºÎÇÏ ¿¹Ãø. Journal of the KNST, 4(2). (2021).
µö½ºÅà ±¸Á¶¸¦ ÀÌ¿ëÇÑ ´ëÇü ÇÔÁ¤ÀÇ ´Ü±â Àü·Â ºÎÇÏ ¿¹Ãø. Àü±âÇÐȸ³í¹®Áö, 69(4). (2020).
.
- ±¹³»Çмú´ëȸ
Àΰø½Å°æ¸ÁÀ» ÀÌ¿ëÇÑ Dynamic positioning ¼±¹ÚÀÇ Àü·ÂºÎÇÏ ¿¹Ãø. ´ëÇÑÀü±âÇÐȸ Çмú´ëȸ ³í¹®Áý.
(2021).
°èÀýÀû Ư¼ºÀ» °í·ÁÇÑ CNN-LSTM ¾Ë°í¸®Áò ±â¹ÝÀÇ °Ç¹° ´Ü±â Àü·ÂºÎÇÏ¿¹Ãø. ´ëÇÑÀü±âÇÐȸ Çмú´ëȸ ³í¹®
Áý. (2021).
µö·¯´× ±â¹ÝÀÇ Å¬·¯½ºÅ͸µÀ» È°¿ëÇÑ Ç³·ÂÅͺóÀÇ ÆÄ¿ö Ä¿ºê ¸ðµ¨¸µ. ´ëÇÑÀü±âÇÐȸ Çмú´ëȸ ³í¹®Áý.
(2021).
VSC HVDC ÀÇ ±×¸®µå Æ÷¹Ö (Grid Forming) Á¦¾î¸¦ ÀÌ¿ëÇÑ Á¦ÁÖ°èÅë ºí·¢½ºÅ¸Æ® ¸ðÀÇ.´ëÇÑÀü±âÇÐȸ Çмú´ë
ȸ ³í¹®Áý. (2020).
µö½ºÅà Àΰø½Å°æ¸ÁÀ» ÀÌ¿ëÇÑ Åͺ¸ÆÒ ¿£Áø À¯È¿¼ö¸íÀÇ ¿¹Ãø. Çѱ¹ÃßÁø°øÇÐȸ Çмú´ëȸ³í¹®Áý. (2019).
µö·¯´×À» ÀÌ¿ëÇÑ ÇÔÁ¤ÀÇ ´Ü±â Àü·ÂºÎÇÏ ¿¹Ãø. ´ëÇÑÀü±âÇÐȸ Çмú´ëȸ ³í¹®Áý. (2019).
´ÙÁß ÀÜÂ÷ ¹æ½ÄÀÇ µö·¯´×À» ÅëÇÑ Å¾籤 ¹ßÀü·® ´Ü±â ¿¹Ãø. ´ëÇÑÀü±âÇÐȸ Çмú´ëȸ ³í¹®Áý. (2019).
Åͺó-¿¬¼Ò±â ´ÜÂ÷¿¡ ÀÇÇÑ °¡½ºÅͺó ³ëÁñ ¿Àü´Þ Ư¼ºº¯È¿¡ ´ëÇÑ ¿¬±¸. ´ëÇѱâ°èÇÐȸ ÃáÃßÇмú´ëȸ.
(2015).
ÈĹæºÐ»ç ¿øÇü Ȧ°ú ½Ã½ºÅÍ È¦ÀÌ ¸·³Ã°¢ È¿À²¿¡ ¹ÌÄ¡´Â ¿µÇâ. ´ëÇѱâ°èÇÐȸ ÃáÃßÇмú´ëȸ. (2015).
°¡½ºÅͺó ´Üº° ³Ã°¢À¯·® º¯È¸¦ °í·ÁÇÑ ½Ã½ºÅÛ ¼º´ÉÇؼ®. ´ëÇѱâ°èÇÐȸ ÃáÃßÇмú´ëȸ. (2015).
¿È»ó±â¹ýÀ» ÀÌ¿ëÇÑ °í¾ÐÅͺó ³Ã°¢ »ó¿Â»ó»ç½ÃÇèÆò°¡. Çѱ¹ÃßÁø°øÇÐȸ Çмú´ëȸ³í¹®Áý. (2014).
.
- Çرº ÇÔÁ¤±â¼úÁö
Àü±âÃßÁø ¼±¹ÚÀÇ ¹ßÀü ¹æÇâ°ú ½Çµ¥ÀÌÅ͸¦ È°¿ëÇÑ Àü·ÂºÎÇÏ ¿¹Ãø ¿¬±¸(2021).
ÇÔÁ¤ ´Ü±âÀü·Â ºÎÇÏ ¿¹ÃøÀÇ Çʿ伺°ú ¹ßÀü¹æÇâ(2020).
.
- ±¹¹æÀϺ¸ ±â°í
±¹¹æÇõ½Å 4.0°ú ÇØ»çÀÇ °úÇбâ¼ú ±³À°¿¡ ´ëÇÑ ¼Ò°í(23³â 6¿ù 12ÀÏ)
´ëÇѹα¹ÀÇ ¹æÀ§»ê¾÷°ú »ç°ü»ýµµ(24³â 5¿ù 13ÀÏ)
.
¡Þ ±â Ÿ
'24 ÇÔÁ¤±â¼ú/¹«±âü°è ¼¼¹Ì³ª ¿ì¼ö³í¹®»ó
'22 Çرº»ç°üÇб³ ±³¼ö¾÷ÀûÆò°¡ ¿ì¼ö±³¼ö
'21 Çرº Çмú»ó
'21 Çرº°úÇбâ¼úÇÐȸ Çмú»ó
'21 Çѱ¹±¹¹æ¿¬±¸¿ø ±¹¹æ¹Ì·¡ÀÎÀçÇмú»ó ¿ì¼ö»ó
'20 Çرº ÇÔÁ¤±â¼úÁö ¿ì¼ö»ó
'20 Çرº°úÇбâ¼úÇÐȸ Ãß°èÇмú´ëȸ ¿ì¼ö³í¹®»ó
'19 ´ëÇÑÀü±âÇÐȸ ÇÏ°èÇмú´ëȸ ¿ì¼ö³í¹®»ó
'19 ±¹¹æ´ëÇб³ ±¹¹æÇмú´ëȸ ±Ý»ó
.
Google Scholar
Researchgate
DBpia
|
|