±³¼öÁø

¸ñ·Ïº¸±â

°øÇÐó ±³¼ö¼Ò°³

 

  °è±Þ/¼º¸í

Áß·É  ±è¿ÁÈñ

 

 

  Á÷±Þ/Á÷À§

±³¼ö

 

  »ç ¹« ½Ç

055-907-5236

 

  ÀüÈ­¹øÈ£

 

 

 

 

 

ÇÐ ·Â

  2015. 2. ¼­¿ï´ëÇб³ È­Çлý¸í°øÇкΠ¹Ú»ç Á¹¾÷
  2010. 2. ¼­¿ï´ëÇб³ È­ÇкΠ¼®»ç Á¹¾÷
  2007. 2. ¼­¿ï´ëÇб³ È­ÇкΠÇлç Á¹¾÷
  2003. 3. Çرº»ç°üÇб³ Á¤º¸Åë½Å°øÇаú Á¹¾÷(57±â)

 

 

°æ ·Â

  2023 Çرº»ç°üÇб³ ±³¼öºÎ ÀÌÇÐó ±âÃÊ°úÇаúÀå
  2022 Çرº»ç°üÇб³ ±³¼öºÎ ±³¹«Ã³ ±³¹«°úÀå
  2020 Çرº»ç°üÇб³ ±³¼öºÎ ±³¹«Ã³ ±³ÇаúÀå
  2017 Çرº»ç°üÇб³ ±³¼öºÎ ÀÌÇÐó ÀÌÇаúÀå
  2016 Çرº»ç°üÇб³ Æò°¡°ü¸®½Ç Æò°¡°úÀå
  2010 Çرº»ç°üÇб³ ±³¼öºÎ ±³¹«Ã³ ±³Çдã´ç
  2004 ÀÛÀü»ç·ÉºÎ ¼ºÀκÀÇÔ ÀüÅõÁ¤º¸°ü
  2003 ÀÛÀü»ç·ÉºÎ ȭõÇÔ Åë½Å°ü

 

 

¿¬±¸ºÐ¾ß

  Nanomaterial, Electrochemistry, Fuel Cell, Renewable Energy

 

 

¼ö¾÷°ú¸ñ

  ´ëÇÐÈ­ÇÐ, Çö´ëÈ­ÇÐÀÇ ÀÌÇØ

 

 

ÇмúÈ°µ¿

 ¡Þ Àú ¼­
    ¹ø¿ª¼­ : ÀϹÝÈ­ÇÐ (2013, ºÏ½ºÈú)

 ¡Þ Çмú³í¹®
    [ÃÖ±Ù 3³â°£]
    ¤·Optimization of hydrophobic additives content in microporous layer for air breathing PEMFC,
    Journal of Electroanalytical Chemistry, 2023. /±³½Å
    ¤·À½ÀÌ¿Â ±³È¯¸· ¼öÀüÇØ ½Ã½ºÅÛ ¿¬±¸ µ¿Çâ, Çرº°úÇбâ¼úÇÐȸ, 2023. /Á¦1ÀúÀÚ
    ¤·Towards outstanding performance of direct urea fuel cells through optimization of anode catalyst
    layer and operating conditions, Journal of Electroanalytical Chemistry, 2022. /Á¦1ÀúÀÚ
    ¤·Effect of Pore Structures in Nickel-based Porous Transport Layer for High-performance and Durable
    Anion-exchange Membrane Water Electrolysis, International Journal of Energy Research, 2022./°øÀúÀÚ
    ¤·High-performance and durable water electrolysis using a highly conductive and stable anion-
    exchange membrane, International Journal of Hydrogen Energy, 2022./°øÀúÀÚ
    ¤·Effect of iridium oxide as an additive on catalysts with different Pt contents in cell reversal
    conditions of polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy,
    2022./°øÀúÀÚ
    ¤·FUEL CELLS AND METHOD OF MANUFACTURING, ¹Ì±¹Æ¯Çã, 2021.
    ¤·Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte
    Membrane Fuel Cells in Liquid Half- and Full-Cells, Chem. Rev., 2021. /Á¦1ÀúÀÚ
    ¤·Dual lithium storage of Pt electrode: alloying and reversible surface layer, J. Mater. Chem. A,
    2021. /°øÀúÀÚ
    ¤·Effect of Anode Iridium Oxide Content on the Electrochemical Performance and Resistance to Cell
    Reversal Potential of Polymer Electrolyte Membrane Fuel Cells, International Journal of Hydrogen
    Energy, 2021./°øÀúÀÚ
    ¤·Poly (carbazole)-based anion-conducting materials with high performance and durability for energy
    conversion devices, Energy & Environmental Science, 2020. /°øÀúÀÚ
    ¤·Enhancement of service life of polymer electrolyte fuel cells through application of nanodispersed
    ionomer, Science advances, 2020. / °øÀúÀÚ
    ¤·Boosting electrochemical stability of ultralow-Pt nanoparticle with Matryoshka-like structure in
    polymer electrolyte membrane fuel cells, Applied Catalysis B: Environmental, 2020. /Á¦1ÀúÀÚ
    ¤·Additional Lithium Storage on Dynamic Electrode Surface by Charge Redistribution in Inactive Ru
    Metal, Small, 2020. /°øÀúÀÚ

 ¡Þ ±â Ÿ
    2014. 5. Çѱ¹ °ø¾÷È­ÇÐȸ Ãá°è Çмú´ëȸ ¿ì¼ö³í¹®»ó
    2013. 11. Çѱ¹ Àü±âÈ­ÇÐȸ Ãß°è Çмú´ëȸ ¿ì¼ö³í¹®»ó
    2013. 2. Á¦19ȸ »ï¼º ÈÞ¸ÕÅ×Å© ³í¹®´ë»ó Àº»ó ¼ö»ó
    2007. 2. ¼­¿ï´ëÇб³ È­ÇкΠ"Best Senior Paper Award" ¼ö»ó

 

 

¸ñ·Ïº¸±â